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The optimal control of bilinear systems with delayed control and coordinates is synthesized by 

reduction to a solution of a linear boundary-value problem. A biological example is given. The optimal 

control of bilinear systems where only the phase coordinates were delayed was studied in [l]. 

1. STATEMENT OF THE PROBLEM 

CONSIDER a bilinear system with after-effect 

+ A(f)X(t) + B(r)u(r), 0 Q r < T, X(r) E R", u E R (1.1) 

The elements A, 4 and B are piecewise-continuous bounded functions, the delays h and h, 
are positive, and the time T > 0 is specified. 

The initial conditions have the form 

x0 =LpEC[--h,Ol, uo = 9 ED[--hl,Ol (l-2) 

where C[-h, 0] is the space of continuous functions in the interval [-h, 01, q-h,, 0] is the 
space of piecewise-continuous bounded functions with uniform metric, the functions Q, and y 
are specified; X, = X(r + 0), 4 < 8 G 0; U, = u(t + 0, -h c c < 0. 

System (1.1) can be considered for A,,(t) = 0 if one makes the change of variable X = Z(r, 
O)Y, where Z(t, s) is the matrix of the Cauchy equation x’(t)= A&)X(t). Henceforth we 
assume that A, = 0. 

The quality criterion has the form 

J = X’(T)NIX(T) + ? [X’(r)N, (r)X(r) + u’(r)N,(r)u (r) t 
to 

+ W, X, u dl & No > 0 (1.3) 

where the prime denotes transposition and the ZVi are non-negative definite piecewise-contin- 
uous bounded matrices. 

The continuous non-negative functional 
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F : R X C[-h, O] X D[+, 0] -+ R 

the specific form of which is derived below, is obtained using the generalized work criterion 
[2], modified for systems with delay [3]; it enables one to reduce the Bellman equation to a 
linear equation. 

An admissible control is any piecewise-continuous function u : [r,, ‘I’] -+ R such that for any 
0, VT W)E[4l, WCW, Olxw-49 01 a solution of Eq. (1.1) exists in the interval [t, 7’1 with 
initial conditions X, = p, u, = w under the control u. The set of all admissible controls is 
denoted by W. 

The optimal control problem consists of determining the admissible control which 
~ni~zes the quality criterion (1.3). 

2. OPTIMALITY CONDITIONS 

We determine the Bellman functional V : [t,, T]x C[-h, O]x q-4, 0] -+ R in the following 
manner. Suppose Xc ; t, fpt w; u):[t, T] + I?“, (r E[&, T], cp E C[-h, 0], w E -o[-h, 01, u E W) is a 
solution of Eq. (1.1) under the control u and with initial conditions X(t + 6; t, rp, y; u) = (p(8), 
-h<e%o, u(t+~=t&), -h,<~~O. 

We put X,(r, fp, ty; u)=X@+.; r, q, yf; u):[-h, O]-+R”. 
Then 

+i x’(s; 6 9, J/i W2 (s)~(s; f, 9, JI ; U) + u’(s)N~(s)u ($1 t 
t 

+ F(s, X,(& 9, B; u 1, u&s I 

We note that the Bellman functional does not usually depend on the control. However, for a 
system of the form (1.1) with delay in the control device the minimum value of the quality 
criterion (1.3) depends uniquely on the preceding values of the control. 

We introduce the operator 

Here v,, is a control equal to u in the interval [t, r +A] and equal to w in the interval 
[r + A-h, t]. We note that the operator L,V is the total derivative of the functional V(t, cp, yt) 
along the trajectory of system (1.1) under the control u. 

Standard application of the dynamical programming method leads to the following 
optimality conditions. 

Theorem. Suppose there exists a functional 

V, : Ito, T] X C[-h, O] X D[--ht, OJ -+R 

satisfying a local Lipschitz condition, and a functional 

uo : [to, Tl x C[-h, O] x D[--hl, O] +R 

satis~~g the Carath~~o~ condition, such that 

in;@(u; r, 9, J/j = WO; t, 93 J/l (2.1) 
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@(u; r, 9, S ) = [L, V0 (r, 9, J, ) + 9’(W~(t)9@) + U’No@)U + F(tJ 91$)1 

vo (L 9, IIll= 9 ‘@W1(09 (0) (2.2) 

Then Qt, (p, I& is the optimal control, and V&, 9, y) is the Bellman functional in problem 
(l.l)-(1.3). 

Remark. The given optimality conditions also remain true when u E R”. Here A is a tensor with 
components a:,, the product AXu is a vector with components 

;a;, (i=l,...,nJ 

and the infimum in (2.1) is calculated over the vector parameter u E R”. 

3. CONSTRUCTION OF THE SOLUTION 

We will look for a solution of problem (2.1), (2.2) in the form 

vo(t, 9, ‘!‘) = 9’(W(r)9(0) + 9’(O) ?- Q(r, 7)9 (7)c.f~ + 
-h 

0 

+ _I 9’(~)Q’(r, 7)dr9(0) + i 7 9’(7)R(c 7,71)9 (71Wd71 + 
-h -h 

+ p’(0) i L(f, P)lc/ (P)dP + 9 G’@)L’(C P)dP9(0) + 
--“I --hi 

(3.1) 

All matrices in (3.1) are assumed to be piecewise-continuously differentiable bounded 
functions. We substitute (3.1) into expression (2.1) and find the control u,, giving the infinum. 
We obtain 

uo(r, 9, IIl) = -N?(t) i [C’(MO + 09 ON 9(O) + 

+ _jh[K’(r, T, 0) + C'(r)Q(r, T)] rp(~)d~ + _; [1M’tL T,O) + C’tWtC T)] rc, (PI+ 1 (3.2) 
I 

w = (AW9 (0) + W)) 

In functional (2.1) we now put 

F(r, x, Ut) = No’ (f).i [C’(f)P(f) + L’(& O)] X(r) + i [K’(r* 71,O) + 
-h 

t C’(r)Q(r, 7)]X(t + T)dT + i [M’(t, 7, 0) + c’(f)L(t, T)] U(t + T)dT 1 ’ 

-“I 
(3.3) 

To determine the coefficients of the functional V, we substitute (3.1)-(3.3) into (2.1) and 
(2.2) and set to zero the coefficients in front of the corresponding quadratic forms of the 
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variables Q, and v We obtain the system of equations 

P(t) + Q(t, 0) + Q’ct, 0) + iv2 (f) = 0 

a a 
(-- -) Q(t,~)+R(t,0,~)=0 

at a7 
(3.4) 

a (tr - ; - ;)R(t, T,TI)=O, (+r -; - - ay jw,T,P)=o 

r, p,p,)=O, ,;+t, P)+w,QP)=o 

OGt<T, -hl Gp, p1 GO, -hGr,r, GO 

Setting to zero the quadratic forms of the variables X(t-h) and u(r -4) we obtain the 
boundary conditions 

f’(T)=N,; Q(T, r)=R(T, T,TI)=L(T,P)= K(T, T,P)=M(T, P,PI)‘O 

--h1 <p,p~ GO, -h<r,r, GO; 

-Q(t,-hj+P(tjA~(tj=O, R(t,wj=R’(~w~ 

-R(t, -h, T)-R’(t, 7, --h) + 2/I’, (t)Q(t, 7) = 0 

-L(r, -h,) + Y(t)Az(t) = 0, -K(t, -h, PI) +k,(tjL(t, PI)= 0 

-K(t, 7, -hl) + Q’(t, 7)A2 (tj = 0 

-M(t, 41, P) - M’(r, P, -hl) + &(t)Ut, P) = 0 

~(t,p,p,)=M(t,p,,p), OQtGT, -hl GAP, QO, -hGT,Tl <O 

(3.5) 

Under the assumptions adopted a unique solution of problem (3.4), (3.5) exists [4] in the 
class of piecewise-continuously differentiable bounded functions and P(t) 2 0. Hence [3] in 
some neighbourhood of the initial point t =0 a solution of problem (l.l)-(1.3) under the 
control (3.2) exists. This solution can be extended over the entire interval [0, T] (which 
indicates the admissibility of the control rh, and consequently, its optimality). 

Indeed, since by (2.1) the total derivative of the functional V, is non-positive under control u0 because 

of system (l.l), we have 

v, ct. x,, uorj( I”o(O, 9.9) 

From this and from (2.1) it follows that 

;4 (SW, @)%lws < 2v, (0,9, JI), Uo(S) = ug (S, x, uos) 

Since the matrix No(s) is uniformly positive definite, then for some constant C 

; u: (Sk-is < cv, (0,9p. $1 

Thus, in any interval [0, t] in which a solution of problem (l.l)-(1.3) under control u,, exists, this 
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control is uniformly square-integral with respect to t along the solution. Then the trajectory of X 
corresponding to u0 is a solution of the linear equation (1.1) (with u replaced by uO) whose coefficients 

are square-integrable in [0, T]. Hence the solution X(t) of problem (l.l)-(1.3) under the control u, can be 
extended over the entire interval [0, 2’1. 

Thus, the solution of the original optimal control problem reduces to the boundary-value 
problem (3.4), (3.5) and is given by formulae (3.1) and (3.2). 

We will first of all consider a special case in which the solution of problem (3.4), (3.5) can be 
represented in analytic form. We assume that system (1.1) only has a delay 4 in the control 

X’(r)= [dqt)X(t) +lqr)J u(r) +-&(t)u(t - ht) 

In this case, the solution of the corresponding Bellman equation (2.1), (2.2) has the form 

The optimal control z+,(t, X,, U,) by virtue of (32) is given by the formulae 

w,(t, x,, w, t) = --ix? (0 [@(Ox + WI ’ (WW) + 

+ _i L(r, p)Uo(r + p)dp) + -9 M(r, 0, pVo(r + p)dp + L’(t, ON(r)1 
I L 

The matrices P, L and M are defined as solutions of the equations 

P’(r)tN(r)=O, oa’r<T 

(ib - $)L(r, PI=% -h, <t-A Pl QO 

Ca a a ----- 
at ap aih 

W(6 P, pl I= 0 

with boundary conditions 

P(T)=N,, ~(T,p)=o, M(r,p,pI)=O, OGrGT, -h, <P,P, GO 
P(r)A&) -- L(r, -hI) = 0 

24(r)L(r, PI - A@, -4, P) - M(f, A -4 I 1 = 0 

The solution of the bo~da~-value problem f3.6), (3.7) has the form 

P(r)=N1 +~N2(s)&, O<r<T 
t 

I 

P(r+p+h,)A2(rtp+hI), t+p+h, CT, 
L(r, P) = 

0 2 r+pthl >T, 
A’2Cr+p+hl)P(r+p+hl)Az(t+p+hl), w<o 

Wr, p,pd= 
0 , 020 

(3.6) 

(3.7) 



42 V. B. KOLMANOVSKII and N. I. KOROLEVA 

w=max(rtpth, -T, rtp, +hl - T), ,f_?=max@,p,) 

We now turn to the general case (3.9, (3.5). We represent the solution of problem (3.4), 
(3.5) as the sum of two solutions: the first is for N, = 0 and an arbitrary matrix NI 2 0, and the 
second is for NI = 0 and an arbitrary matrix N, 2 0. 

The first solution (for N2 =0) has the form 

p(t)= b’(f)~,b(r), Q(r. r)= -f~‘(r)Nrb’(r+r) 

R(r,~,~,)=b”(rt~)Nlb’(r+~l), 09tGT, -~QT,TI GO 

L(r, p)=b’(r)Nlbl(r +p thl),K(f, r,p)= -b’(rtONlbl(rtPtW 

M(r,p,pt)=b’l(rtpthl)Nlbl(rtpl thl) 

b(r tp tW&(rt~ +htX ttpth, <min(T,pthl) 

bl(rtpthr)= 
0 , r+pth,>min(T,p+hl) 

(3% 

The matrix b(f) is a solution of the Cauchy problem 

b’(r) = -b(rth)AI(rth), b(Z')=I, b(s)=O, s>T 

To construct the second solution (for N, = 0) we put ti = T -ih (i = 0, 1, . . . ) and determine 
the functions I..,, MI, A3 and Ad. For ri, stsri the function A,(r+z+h)=O if -t+~,+~ <zsO 
and A,(r+z+h)=A,(r+z+h) if -hGzG-r+ri+l. Similarly, A,(t+p+h,)=A,(r+p+&, 4, s 
p=s--t+ri+l; A&tptIr.,)=O if -r+ti+l cps0, fi+l stsri. Finally, MI(ti, t+p-ri, p)=O, L,(ti, 
t+p-ri)=O, Kl(ri, z, t+p-ri)=O if -h,spc--t+r,,, and KI(ti, r, t+p-ti)=K(ri, z, t+p-t,), 
i&f,@, t+p-ri, p)=M(t,, t+p-ti, p), h(ti, ttp-ti)=L(ti, t+p-r,)=o if -t+ri+l sps0, titls 
td t,. 

Then for ri+I it <ti we have the recursive relations 

P(r) = P(rJ t ~N2(s)ds t 7 [Q(ri, S) t Q’(ti. s)] ds + .? “r R(rj, s, a)dsdcw 
t t- tj t- ?i Z- tj 

Q(r, 7) = [P(ri) t 4 Nz(s)ds t 7 Q(ri, s)ds t “s Q’(ri, s)dr + (3.9) 
t+r+h t- tj t- ti+ r 

t 7 da i 
t- ti t- ti+ 1 +T 

R(r~.s,#ds]Ap(rt~th)tQ,(ti,rt~-ti)tr~t Rl(ti,s,r t7-f#s 
i 

Here 

RZ(ti,T+t--ti,Tl tt-ti)= 
0, if at least one of the arguments does 
not lie in the interval [-~+r~+~, 0] 

Then 

R(r, T,T1)=A&+T +h)[ Y 
0 

r+h+max(r,s,) 
Nz (s)ds t P(rJ t 5_ ,,l+ 1 +rQ’(h MS + 

I 
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+ r_ r; 1 +TQ(h, SW + ? da i R(tip S, OJ)dS]AJ(r + T1 + h, + 
t- ti+ ] +T t-fi+l+Tl 

+A;(t t7 +h)[Q:(tip t+Tl - ti)+ j Rl(ti, S, I + 71 - ri)dsl + 
t- ti+ 1 +T 

+ [Ql (tit f + 7 - fi) + y R1(rl, f+T - tf,S)dS]A~(t+T1 +ll)+ 
t- ri+r+r’l 

+R,(t,, t+T- tl, f tT1 -_ ti) 

We then have 

L(f, p) = [ ;’ Nz(S)dS + P(fi) + 7 Q'(ti, S)dS + 
r+o+h 1 r- ri 

r_ r;+ 1 +pQ(fis SW + 

K(tJ,p)=A;(r+T+h)[ 
*i 
I iv2 (s)ds + f-yfi) + 9 Q(ri, S) dS + 

t+max(s+h, p+h, )’ r- ri+ l+P 

t i Q'(b s)ds + ; da 7 R(ri,S,a)dS]Aq(r+P+hl)+ 
r- ii+ 1 +T t-rf+l+T r- ri+ I +P 

tA;.(r+T+h)[Ll(ri, t+p - tr)+ i K,(ri, ss t + p - WI + 
r--ti+ 1 +T 

+ [Q;(fi, t +T - fi)+ 7 R,(rl,s,r+T-fTi)ds] X 
r-rf++l+P 

(3.10) 

(3.11) 

(3.12) 

Finally 

qr P,Pd=A(r+P+h)[ 
ri 

5 N2 (wf + PO,) + 
r+h,+max(p.0,) 

r-h ,+pQ'Cfi* s)& + 

t r_ri!I pQ(tie SW + 7 da ? R(rig Sp a)dS]Aa(r+P1 +‘I)+‘4(r+P+‘I)X 
+ t-tti+l+P r-ri+l+P, 

x [Lt(tis t+Pl - M+ 7 Kl(ti, S, t+pl - ti)dS] + [L’l(ris r + P - ‘f) + 
r- rl+ 1 +P 

t ? G($J. t+p- fi)ds]Ah(r+p, +h,)+Mz(ti, r+P-ti, r+Pl -ri) (3.13) 
‘-‘i+l+P, 

I 
M(fi, f + p - tit t t PI - ti), t*lGfQrfj -r+r~+~QP~Pl~o 

M2(ti* f+p - ti, t+Pl - h)= 0, if at least one of the arguments p, pI 
does not lie in the interval [-t+ti+l, O] 

The recurrence formulae (3.9)-(3.13) enable us to obtain a second solution of problem (3.~9, 
(3.5) sequentially in the intervals [I~+~, ti] (i = 0, 1, . . . ). Adding this solution to (3.8), we obtain 
the general solution. In particular, for T-h s t S T we have 
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P(r)=N1 tFNz(r)dr, Q(r,7)=P(r+~+h)As(r+ 7th) 
t 

W, LQ)= .45(r+7th)P(rth+max(~,71))AJ(rt7, th) 

L(r, P)=P(rtpthlZA4(r+p+hl) 

M(r,p,pl)=Ab(rtptht)P(rthl +m=hwhb44(wh +h) 

1Y(r,7,p)=A;(rt~th)P(rtmax(h+7,hl +P)jA&tPth) 

4. SOME GENERALIZATIONS 

The results obtained can be modified to other controlled systems. We give one of these 
generalizations to a system of the form 

X’(r)=Al(r)X(r-h)tA2(r)u(r-hl)t(A(r, X,)tB(r))u(r), OGt<T (4.1) 

Here the functional A : Rx C[--h,, 0] + R is measurable with respect to its set of arguments, 
piecewise-continuous with respect to c and satisfies a Lipschitz condition for its second 
arg~ent; X, in A@, X,) denotes the section of the trajectory X, = X(t + r), -h2 c z s 0. 

The solution of Eq. (4.1) is governed by the initial conditions (1.3) and X0 = pl E C[-max(h,, 
k), 01. 

The quality criterion has the form (1.3) with functional F given by (3.3), throughout which 
C(f) is replaced by A (t, X,). The optimal control has the form (3.2) with C(t) replaced by A( T, 
rp). The Bellman functional (3.1) stays unchanged. In particular, it follows that although the 
optimal control and trajectory depend on h,, the functional (3.2) does not depend on it. Tbis 
means that for h = 0 the optimum value of the quality criterion does not in general depend on 
the values of the initial function p(s), s CO, although both the trajectory and the optimal 
control depend on it strongly. 

5. EXAMPLE 

Consider a model of a controlled process of the microbiological growth of bacteria in a closed vessel 
under the condition that transfer of nutrients from one point to another occurs over a finite time together 

with the production of output material. Such a process is described by a bilinear model with delay in the 
control which is the rate of supply of nutrients into the bioreactor 

m’(t) = y(t)m(t) - u(t)m(r) - rn(f - 7) + i.4, WN - P) 

r(t) 
S’(t) = -m(t) - m,t)s(r) + spa + P, (rt)rr(t - P) 

K, 

(5.1) 

Taking into account the interaction between the cellular material with the nutrient medium, the first 
equation characterizes the balance of microbiological mass in a closed vessel, and the second describes 
the production process for the product being synthesised. In the model (5.1) being considered we use the 
notation of [S]: m(t) is the microbiological mass concentration of the bacterial culture, S(t) is the 

concentration of output product, U(t) is the rate of supply of nutrients required to support bacterial 
activity, fit) is the growth rate coefficient of the cellular mass, K, is the growth rate parameter of the 

output product, nl(r-r) is a term describing the loss of bacterial activity after a finite time 2, S, is some 
constant concentration of output product, U(T -p) is the rate of supply of nutrients at an earlier time for 

supporting bacterial activity, and &(t)U(t- p) and h(t)V(t-p) are, respectively, the concentrations of 
nutrients in the biomass and in the output substratum at an earlier time. 

At the initial time to there is an injection of bacterial mass into the closed vessel, and so it is natural to 
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Fm.1. 

assume the absence of au output substratum and mi~rob~olo~~l mass from the nutrient medium up t0 

time to 
s(z,)=o 

m&1= m,, ~(r~+e)=o, --7<e<o W) 

u(t,+\9)=0, -pc;i3<0 

Under these conditions one should reach a specified level of output product $, in a finite time aud with 

min~um ~usump~ou of nutrients. We choose a quality criterion appropriate to the problem in 
question, of the form 

Figure 1 shows the phase trajectories for m(t) and S(r) under optimal control constructed by the 
method proposed for the modified quality functional. 

The problem was solved n~eri~lly for the following parameter values 

t, “0, T=3, T=l, S,=3.5, S,=fS, p=o,2, 

EC, -52, y(t)=O,OS, pi =& = 1, Cx- 1, m, = 110 

The graph shows that S and m tend to the specified values. 
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